Regulation of protein degradation in muscle by calcium. Evidence for enhanced nonlysosomal proteolysis associated with elevated cytosolic calcium.
نویسندگان
چکیده
Calcium-dependent regulation of intracellular protein degradation was studied in isolated rat skeletal muscles incubated in vitro in the presence of a large variety of agents known to affect calcium movement and distribution. A23187, KC1, sucrose, and 8-(diethylamino)octyl-3,4, 5-trimethoxybenzoate hydrochloride increase proteolysis while tetracaine, verapamil, and low extracellular calcium caused significant decreases. Additionally, dantrolene decreases proteolysis in the presence of depolarizing levels of potassium, while it has no effect on degradation in normal media. The dose dependence of calcium ionophore A23187 on proteolysis and contracture tension are parallel. Furthermore, excess KC1 and hypertonic solutions increased protein degradation at doses reported to cause tension. Thus, the parallel increase in proteolysis and tension in response to various agents supports the hypothesis that protein degradation in muscle is regulated by calcium. To determine the responsible proteolytic systems involved in calcium-dependent degradation, the effect of different classes of protease inhibitors was tested. Addition of the inhibitors leupeptin and E-64-c blocked the A23187-induced increase in degradation. Since proteases sensitive to these agents are present in both the sarcoplasm and lysosomes, known lysosomotropic agents, methylamine and chloroquine, as well as 3-methyladenine, a specific autophagy inhibitor, were used in combination with A23187. These agents did not inhibit calcium ionophore-induced proteolysis, although these three agents selectively inhibited enhanced degradation seen in the absence of insulin, demonstrating an autophagic/lysosomal pathway in these muscles. Thus, our results suggest that nonlysosomal leupeptin- and E-64-c-sensitive proteases are responsible for calcium-dependent proteolysis in muscle.
منابع مشابه
Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a nonlysosomal proteolytic system.
Infusion of cystamine into the isolated, perfused rat liver resulted in tissue damage preceded by the formation of cystamine-protein mixed disulfides which were mainly detected in the plasma membrane fraction. Hepatotoxicity was prevented when dithiothreitol was infused after cystamine or when the calcium antagonist, verapamil, was co-infused with the disulfide. In isolated hepatocytes, the for...
متن کاملMuscle Wasting in a Rat Model of Long-lasting Sepsis Results from the Activation
We studied the alterations in skeletal muscle protein breakdown in long lasting sepsis using a rat model that reproduces a sustained and reversible catabolic state, as observed in humans. Rats were injected intravenously with live Escherichia coli ; control rats were pair-fed to the intake of infected rats. Rats were studied in an acute septic phase (day 2 postinfection), in a chronic septic ph...
متن کاملHyperthermia stimulates energy-proteasome-dependent protein degradation in cultured myotubes.
Previous studies suggest that elevated temperature stimulates protein degradation in skeletal muscle, but the intracellular mechanisms are not fully understood. We tested the role of different proteolytic pathways in temperature-dependent degradation of long- and short-lived proteins in cultured L6 myotubes. When cells were cultured at different temperatures from 37 to 43 degrees C, the degrada...
متن کاملCalcium signalling in bacteria.
In eukaryotic cells, variations in the levels of cytosolic free calcium regulate processes as important and disparate as chemotaxis, chromosome segregation, fertilization, ion transport, muscle contraction, passage through cell cycle transition points, proteolysis, secretion, and substrate uptake (7). Cytosolic free calcium concentration is tightly controlled by the action of specific pumps and...
متن کاملThe Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action
Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 25 شماره
صفحات -
تاریخ انتشار 1985